The categorical product of two 5-chromatic digraphs can be 3-chromatic

نویسندگان

  • Stéphane Bessy
  • Stéphan Thomassé
چکیده

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. The Categorical Product of Two 5-Chromatic Digraphs can be 3-Chromatic Stéphane Bessy, Stéphan Thomassé

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

Chromatic Numbers of Products of Tournaments: FractionalAspects of Hedetniemi's Conjecture

The chromatic number of the categorical product of two n-tournaments can be strictly smaller than n. We show that min{χ(S × T ) : S and T are n-tournaments} is asymptotically equal to λn, where 12 ≤ λ ≤ 2 3 .

متن کامل

Brooks-type Results for Coloring of Digraphs

In the thesis, the coloring of digraphs is studied. The chromatic number of a digraph D is the smallest integer k so that the vertices of D can be partitioned into at most k sets each of which induces an acyclic subdigraph. A set of four topics on the chromatic number is presented. First, the dependence of the chromatic number of digraphs on the maximum degree is explored. An analog of Gallai’s...

متن کامل

Computing Multiplicative Zagreb Indices with Respect to Chromatic and Clique Numbers

The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...

متن کامل

Coloring digraphs by iterated antichains

We show that the minimum chromatic number of a product of two n-chromatic graphs is either bounded by 9, or tends to infinity. The result is obtained by the study of coloring iterated adjoints of a digraph by iterated antichains of a poset.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 305  شماره 

صفحات  -

تاریخ انتشار 2005